Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025735

RESUMEN

Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.


Asunto(s)
Cambio Climático , Caracoles , Animales , Caracoles/genética , Océanos y Mares , Genoma , Genómica
2.
J Phycol ; 59(5): 838-855, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37432133

RESUMEN

Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.


Asunto(s)
Ecosistema , Kelp , Animales , Células Germinativas de las Plantas , Océanos y Mares , Bosques
3.
Sci Total Environ ; 876: 162778, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906039

RESUMEN

Ocean warming and marine heatwaves significantly alter environmental conditions in marine and estuarine environments. Despite their potential global importance for nutrient security and human health, it is not well understood how thermal impacts could alter the nutritional quality of harvested marine resources. We tested whether short-term experimental exposure to seasonal temperatures, projected ocean-warming temperatures, and marine heatwaves affected the nutritional quality of the eastern school prawn (Metapenaeus macleayi). In addition, we tested whether nutritional quality was affected by the duration of exposure to warm temperatures. We show the nutritional quality of M. macleayi is likely to be resilient to short- (28 d), but not longer-term (56 d) exposure to warming temperatures. The proximate, fatty acid and metabolite compositions of M. macleayi were unchanged after 28 d exposure to simulated ocean warming and marine heatwaves. The ocean-warming scenario did, however, show potential for elevated sulphur, iron and silver levels after 28 d. Decreasing saturation of fatty acids in M. macleayi after 28 d exposure to cooler temperatures indicates homeoviscous adaptation to seasonal changes. We found that 11 % of measured response variables were significantly different between 28 and 56 d when exposed to the same treatment, indicating the duration of exposure time and time of sampling are critical when measuring this species' nutritional response. Further, we found that future acute warming events could reduce harvestable biomass, despite survivors retaining their nutritional quality. Developing a combined knowledge of the variability in seafood nutrient content with shifts in the availability of harvested seafood is crucial for understanding seafood-derived nutrient security in a changing climate.


Asunto(s)
Penaeidae , Agua de Mar , Animales , Humanos , Temperatura , Estaciones del Año , Valor Nutritivo , Ácidos Grasos , Océanos y Mares , Instituciones Académicas , Cambio Climático , Ecosistema , Calentamiento Global
4.
Sci Rep ; 13(1): 1248, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690643

RESUMEN

Climate change has driven contemporary decline and loss of kelp forests globally with an accompanying loss of their ecological and economic values. Kelp populations at equatorward-range edges are particularly vulnerable to climate change as these locations are undergoing warming at or beyond thermal tolerance thresholds. Concerningly, these range-edge populations may contain unique adaptive or evolutionary genetic diversity that is vulnerable to warming. We explore haplotype diversity by generating a Templeton-Crandall-Sing (TCS) network analysis of 119 Cytochrome C Oxidase (COI) sequences among four major population groupings for extant and putatively extinct populations only known from herbarium specimens of the dominant Laminarian kelp Ecklonia radiata in the south-western Pacific, a region warming at 2-4 times the global average. Six haplotypes occurred across the region with one being widespread across most populations. Three unique haplotypes were found in a deep-water range-edge population off Moreton Island, Queensland, which likely represents both a contemporary and historic refuge during periods of climatic change. Hindcasting E. radiata cover estimates using extant data, we reveal that this region likely supported the highest kelp cover in eastern Australia during the last glacial maximum. The equatorward range edge, deep-water kelp populations off Moreton Island represent a genetically diverse evolutionary refuge that is currently threatened by warming and requires prompt ex-situ conservation measures.


Asunto(s)
Kelp , Kelp/genética , Cambio Climático , Australia , Refugio de Fauna , Agua , Ecosistema
5.
Commun Biol ; 5(1): 1329, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463333

RESUMEN

Anthropogenic climate change is causing a rapid redistribution of life on Earth, particularly in the ocean, with profound implications for humans. Yet warming-driven range shifts are known to be influenced by a variety of factors whose combined effects are still little understood. Here, we use scientist-verified out-of-range observations from a national citizen-science initiative to assess the combined effect of long-term warming, climate extremes (i.e., heatwaves and cold spells), ocean currents, and species traits on early stages of marine range extensions in two warming 'hotspot' regions of southern Australia. We find effects of warming to be contingent upon complex interactions with the strength of ocean currents and their mutual directional agreement, as well as species traits. Our study represents the most comprehensive account to date of factors driving early stages of marine species redistributions, providing important evidence for the assessment of the vulnerability of marine species distributions to climate change.


Asunto(s)
Ciencia Ciudadana , Humanos , Fenotipo , Cambio Climático , Convulsiones
6.
Int J Biometeorol ; 66(6): 1045-1056, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35266045

RESUMEN

Australia's primary production sector operates in one of the world's most variable climates with future climate change posing a challenge to its ongoing sustainability. Recognising this, Australia has invested in understanding climate change risks to primary production with a substantial amount of research produced. Recently, focus on this research space has broadened, with interests from the financial sector and expanded scopes of works from government and industry. These expanded needs require sector- and country-wide assessments to assist with the implementation of climate strategies. We considered the applicability of the current research body for these needs by reviewing 188 peer-reviewed studies that considered the quantitative impacts of climate change on Australia's primary industries. Our broad review includes cropping, livestock, horticulture, forestry and fisheries and biosecurity threats. This is the first such review for Australia, and no other similar country-wide review was found. We reviewed the studies through three lenses, industry diversity, geographic coverage and study comparability. Our results show that all three areas are lacking for sector- and country-wide assessments. Industry diversity was skewed towards cropping and biosecurity threats (64% of all studies) with wheat in particular a major focus (25% of all studies). Geographic coverage at a state level appeared to be evenly distributed across the country; however, when considered in conjunction with industry focus, gaps emerged. Study comparability was found to be very limited due to the use of different historical baseline periods and different impact models. We make several recommendations to assist with future research directions, being (1) co-development of a standard set of method guidelines for impact assessments, (2) filling industry and geographic knowledge gaps, and (3) improving transparency in study method descriptions. Uptake of these recommendations will improve study application and transparency enabling and enhancing responses to climate change in Australia's primary industries.


Asunto(s)
Cambio Climático , Australia , Predicción
7.
Mar Environ Res ; 176: 105590, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35255319

RESUMEN

Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.


Asunto(s)
Cambio Climático , Ecosistema , Explotaciones Pesqueras , Humanos , Estado Nutricional , Salinidad , Alimentos Marinos
8.
Glob Chang Biol ; 27(14): 3200-3217, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33835618

RESUMEN

Climate-driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under-represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub-Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi-taxon continent-wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one-fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub-tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate-impact research.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Australia , Peces
9.
Mar Environ Res ; 159: 105009, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32662439

RESUMEN

Globally, millions of people depend on nutritional benefits from seafood consumption, but few studies have tested for effects of near-future climate change on seafood health and quality. Quantitative assessments of the interactive effects of climate change and discarding of fisheries resources are also lacking, despite ~10% of global catches being discarded annually. Utilising the harvested blue swimmer crab (Portunus armatus), we experimentally tested the effects of near-future temperature and salinity treatments under simulated capture and discarding on a suite of health and nutritional quality parameters. We show that nutritional quality (protein, lipids, moisture content and fatty acid composition) was not significantly affected by near-future climate change. Further, stress biomarkers (catalase and glutathione S-transferases activity and glycogen content) did not differ significantly among treatments following simulated capture and discarding. These results support the inherent resilience of P. armatus to short-term environmental change, and indicate that negative physiological responses associated with discarding may not be exacerbated in a future ocean. We suggest that harvested estuarine species, and thus the industries and food security they underpin, may be resilient to the future effects of climate change due to their adaptation to naturally variable habitats.


Asunto(s)
Braquiuros , Cambio Climático , Animales , Ecosistema , Explotaciones Pesqueras , Salinidad
10.
Glob Chang Biol ; 24(11): 5440-5453, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30003633

RESUMEN

The environmental effects of climate change are predicted to cause distribution shifts in many marine taxa, yet data are often difficult to collect. Quantifying and monitoring species' suitable environmental habitats is a pragmatic approach for assessing changes in species distributions but is underdeveloped for quantifying climate change induced range shifts in marine systems. Specifically, habitat predictions present opportunities for quantifying spatiotemporal distribution changes while accounting for sources of natural climate variation. Here we demonstrate the utility of a marine-based habitat model parameterized using citizen science data and remotely sensed environmental covariates for quantifying shifts in oceanographic habitat suitability over 22 years for a coastal-pelagic fish species in a climate change hotspot. Our analyses account for the effects of natural intra- and interannual climate variability to reveal rapid poleward shifts in core (94.4 km/decade) and poleward edge (108.8 km/decade) oceanographic habitats. Temporal persistence of suitable oceanographic habitat at high latitudes also increased by approximately 3 months over the study period. Our approach demonstrates how marine citizen science data can be used to quantify range shifts, but necessitates shifting focus from species distributions directly, to the distribution of species' environmental habitat preferences.


Asunto(s)
Distribución Animal , Cambio Climático , Ecosistema , Perciformes/fisiología , Animales , Australia , Participación de la Comunidad , Recolección de Datos , Geografía , Océanos y Mares , Océano Pacífico , Proyectos de Investigación
11.
Biol Rev Camb Philos Soc ; 93(1): 284-305, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28568902

RESUMEN

Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Ecología/métodos , Ciencias Sociales/métodos , Animales , Humanos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...